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Abstract: Azidoformates are interesting potential nitrene
precursors, but their direct photochemical activation can
result in competitive formation of aziridination and allylic
amination products. Herein, we show that visible-light-acti-
vated transition-metal complexes can be triplet sensitizers that
selectively produce aziridines through the spin-selective photo-
generation of triplet nitrenes from azidoformates. This
approach enables the aziridination of a wide range of alkenes
and the formal oxyamination of enol ethers using the alkene as
the limiting reagent. Preparative-scale aziridinations can be
easily achieved under continuous-flow conditions.

Aziridines are versatile intermediates for the synthesis of
nitrogen-containing compounds.!) Many important natural
products also feature aziridines as their principal bioactive
functionality.”) However, methods for aziridine synthesis are
somewhat underdeveloped,” particularly in comparison to
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the wealth of methods available for epoxide synthesis. The
most widely utilized methods for alkene aziridination involve
the generation of metallonitrenes from iminoiodinane
reagents.” These methods, unfortunately, produce stoichio-
metric haloarene byproducts, and there has consequently
been significant interest in the use of alternate nitrene
precursors for aziridination reactions.?! Organic azides
hppear particularly attractive in this regard because they
benerate nitrenes by expelling dinitrogen as the sole stoichio-
metric byproduct. Several laboratories, including notably the
Zhangl® and Katsuki”' groups, have reported pioneering
hdvances in catalytic aziridination with organoazides. Never-
theless, these processes often require a large excess of alkene,
hnd many methods are limited to styrenic olefins. Thus, there
remains a need for new approaches to aziridination that
utilize organoazides as nitrene precursors.

Photochemical activation offers one potential solution.
Electronically excited organic azides rapidly decompose to
form reactive free nitrenes.’! However, attempts to perform
intermolecular aziridination reactions by direct photolysis of
azidoformates typically produce complex mixtures containing
both aziridines and allylic amination products,”) a result that
has led to the pervasive notion that free nitrenes are too
reactive to provide synthetically useful chemoselectivities.
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Seminal studies by Lwowski et al., however, demonstrated
that while singlet carbethoxynitrenes competitively undergo
both amination and aziridination reactions, triplet
carbethoxynitrenes react selectively with alkenes to afford
aziridines with comparatively slow reaction with allylic C—H
bonds."”! Thus the fundamental challenge in photochemical
aziridination reactions appears not to be the absolute
reactivity of free nitrenes but rather the unselective produc-
tion of both singlet and triplet nitrenes from direct photolysis
of azides.

We wondered if chemoselective photochemical aziridina-
tion reactions could be achieved through triplet sensitization,
which would produce nitrenes selectively in the triplet state.
Our laboratory previously studied the use of visible-light-
absorbing transition-metal complexes to sensitize vinyl azides
towards intramolecular heterocyclic ring-closing reactions
(Scheme 1).!'" Quite recently, Kénig and co-workers reported
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Scheme 1. Photocatalytic activation of azides by visible-light triplet
sensitization.

an intriguing method for photocatalytic amidation of elec-
tron-rich heterocycles, the key step of which was proposed to
involve triplet sensitization of a benzoyl azide.' To the best
of our knowledge, however, the use of triplet sensitizers to
promote chemoselective intermolecular alkene aziridination
reactions has not previously been described. Herein, we
demonstrate that visible-light triplet sensitization of azido-
formates enables the preparation of a range of structurally
diverse aziridines. Notably, this method utilizes the alkene as
the limiting reagent, provides high yields for both aliphatic
and aromatic alkenes, and exhibits excellent selectivity for
aziridination over allylic amination.

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

We elected to focus our investigations on azidoformates as
nitrene precursors, based on several considerations. First,
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Scheme 4. Aziridination of 2 in flow.

absorbing transition-metal photosensitizer for the spin-selec-
tive generation of triplet nitrenes from azidoformates. A wide
range of alkenes can be aziridinated or oxyaminated under
operationally facile batch conditions, and the use of a flow
reactor enables the reaction to be conducted on a preparative
scale. Further efforts in our lab will continue to develop
visible-light triplet sensitization as a general, conceptually
novel strategy for C—N bond forming reactions using organo-
azides as the nitrene precursors.
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